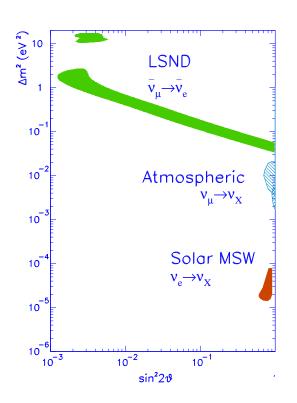
Prospects for Sterile Neutrino Searches in MiniBooNE

Janet Conrad, Jonathan Link, Jocelyn Monroe, Michael Shaevitz, Michel Sorel, Sam Zeller


Columbia University, for the MiniBooNE collaboration APS/DPF Meeting, April 2003, Philadelphia

Outline

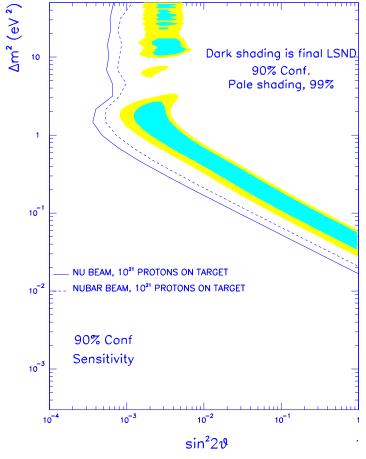
- Present experimental constraints on sterile neutrino models
- Sensitivity to sterile neutrinos in MiniBooNE
- Neutrino flux and cross-sections, and their importance for the MiniBooNE ν_{μ} disappearance measurement

Beyond minimal extensions of the SM

- Minimally extended SM: three massive neutrinos
- There are three experimental hints pointing toward neutrino oscillations:

• Two-neutrino oscillation approximation:

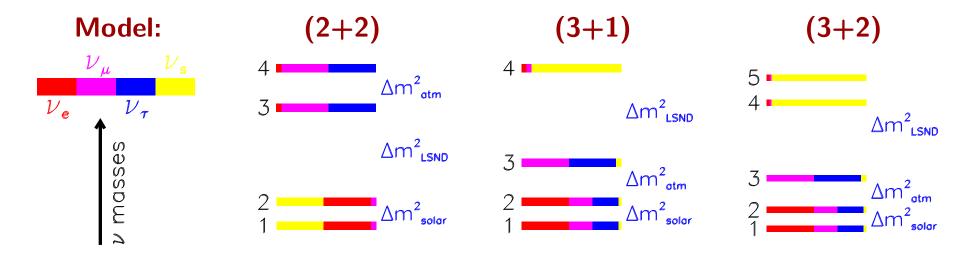
$$\left(egin{array}{c}
u_{lpha} \\
u_{eta} \end{array}
ight) = \left(egin{array}{c} \cos artheta & \sin artheta \\
-\sin artheta & \cos artheta \end{array}
ight) \left(egin{array}{c}
u_1 \\
u_2 \end{array}
ight), \ \Delta m^2 = m_2^2 - m_1^2$$


• Oscillation probabilities:

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^2 2\theta_{\alpha\beta} \sin^2 (1.27\Delta m^2 L/E), \ \alpha \neq \beta$$
$$P_{\nu_{\alpha} \to \nu_{\alpha}} = 1 - \sin^2 2\theta_{\alpha\alpha} \sin^2 (1.27\Delta m^2 L/E)$$

• $\Delta m_{sol}^2 + \Delta m_{atm}^2 \neq \Delta m_{LSND}^2 \Rightarrow$ need more than three massive neutrinos? Michel Sorel, Columbia U.

Is LSND due to $\bar{ u}_{\mu} ightarrow \bar{ u}_{e}$ oscillations? MiniBooNE will tell


- The LSND evidence: $\langle P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \rangle = (0.264 \pm 0.045 \pm 0.067)\%$
- MiniBooNE will address in a definite and independent way the LSND evidence for $\bar{\nu}_{\mu} \to \bar{\nu}_{e}$ oscillations

- definite: same L_{ν}/E_{ν} ratio as for LSND and enough statistics to cover the LSND region at the 5σ level
- independent: $E_{\nu} = 0.3 1.5$ GeV and $L_{\nu} = 540$ m are both a factor of 10 larger than LSND, resulting in very different backgrounds to the oscillation search and systematics for the ν flux and particle ID

Sterile neutrino models: a wide range of possibilities...

- Can solar, atmospheric, and LSND be explained by introducing one or more neutrinos with no standard weak couplings ("sterile neutrinos")?
- Noninteracting particles can be hard to find experimentally, but not theoretically... most theories explaining the origin of neutrino masses require sterile neutrinos!
- Possible neutrino mass and mixing scenarios (colored boxes indicate weak flavor content of mass eigenstates):

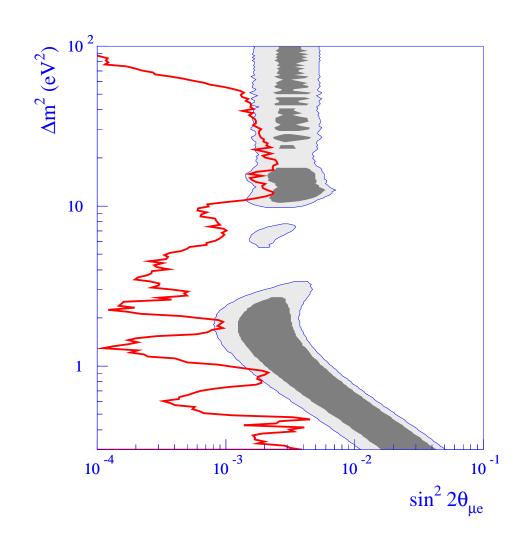
Constraints on (3+1) and (3+2) models from SBL experiments

• General oscillation formula depends on several neutrino masses m_i and elements $U_{\alpha i}$ of the mixing matrix relating flavor to mass eigenstates:

$$P(
u_lpha
ightarrow
u_eta) = \delta_{lphaeta} - 4\sum_{j>i}^n \sum_i^n U_{lpha j} U_{eta i} U_{eta i} U_{eta i} [1.27 L(m_j^2 - m_i^2)/E]$$

- (3+1), (3+2): can consider constraints from short-baseline experiments only
 - (3+1): $P(\nu_{\mu} \rightarrow \nu_{e})$ depends only upon $m_4, U_{e4}, U_{\mu 4}$
 - (3+2): $P(\nu_{\mu} \to \nu_{e})$ depends only upon $m_{4}, U_{e4}, U_{\mu 4}, m_{5}, U_{e5}, U_{\mu 5}$
- Method: perform a combined χ^2 analysis of the "Null Short-BaseLine" experiments Bugey and CHOOZ ($\bar{\nu}_e \to \bar{\nu}_x$), CCFR and CDHS ($\nu_\mu \to \nu_x$), KARMEN ($\bar{\nu}_\mu \to \bar{\nu}_e$), to derive upper limits on the LSND oscillation probability

 $p_{LSND} \equiv \langle P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \rangle_{LSND} : \bar{\nu} \to \bar{\nu}_{e}$ probability averaged over LSND L/E distribution


⇒ is this NSBL upper limit consistent with the nonzero LSND result?

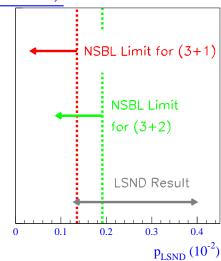
The (3+1) case

Two-neutrino approximation is valid for (3+1) models

 \Rightarrow In $(\sin^2 2\theta_{\mu e}, \Delta m^2)$ space, the region to the right of the curve is EXCLUDED at 90% CL by NSBL experiments

Some Δm^2 "islands" are allowed

The (3+2) case

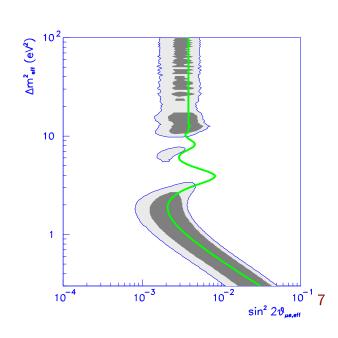

Limits on the LSND oscillation probability (90% CL)

$$p_{LSND} \equiv \langle P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \rangle_{LSND}$$

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ probability averaged over LSND L/E

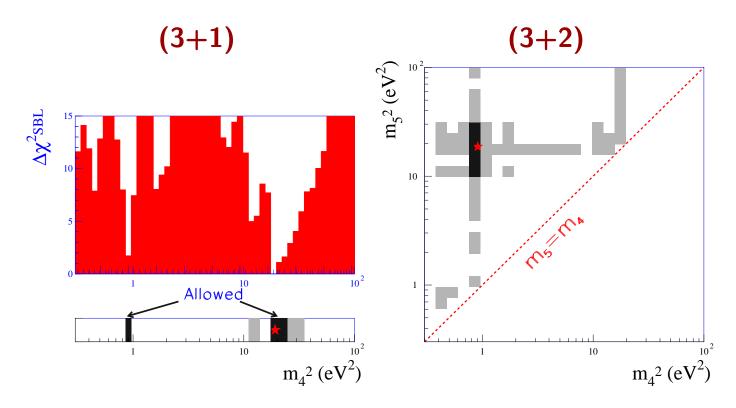
NSBL 90% upper limits for (3+2) models are less stringent than for (3+1) models by $\simeq 40\%$

 \Rightarrow (3+2) models to be preferred to (3+1)?



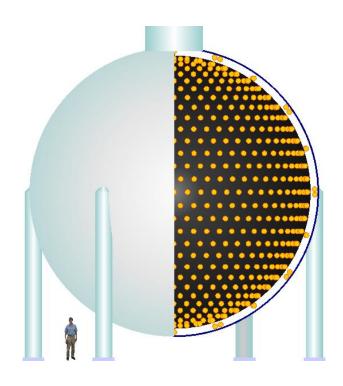
Limits on " 2ν mixing" (90% CL)

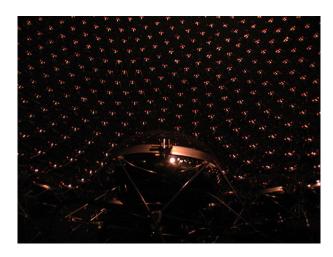
 2ν approximation is not valid for (3+2), since there are three Δm^2 : m_4^2 , m_5^2 , $m_5^2-m_4^2$.


Define "effective" 2ν mixing angle $\theta_{\mu e}$ and Δm^2 :

$$\sin^2 2\theta_{\mu e,eff} \langle \sin^2 (1.27\Delta m_{eff}^2 L/E) \rangle_{LSND} \equiv p_{LSND}$$

Preferred values of neutrino masses in (3+1) and (3+2) models

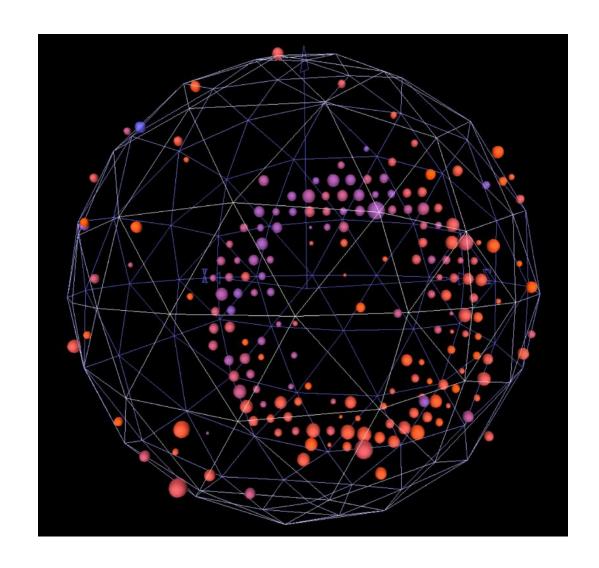

• A joint analysis of NSBL and LSND data gives the following allowed regions (grey is 90% CL, black is 99% CL):



• A combined analysis gives much better guidance than LSND alone on what Δm^2 might be responsible for the LSND signal

MiniBooNE

- 12 m in diameter sphere filled with 800 tons of mineral oil
- A sphere-within-a-sphere:
 - Light tight inner signal region is lined with 1280 PMTs 10% coverage
 - Outer spherical shell serves as veto region (240 PMTs)
- Neutrino interactions in the oil produce:
 - Prompt and ring-distributed Cherenkov light
 - Late and isotropically-distributed scintillation light


The BooNE Collaboration

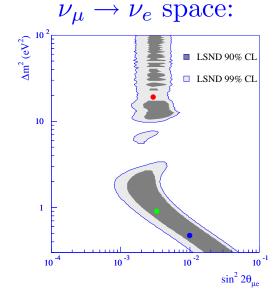
- Y. Liu, I. Stancu, University of Alabama
- ▶ S. Koutsoliotas, Bucknell University
- E. Church, C. Green, G. J. VanDalen, University of California, Riverside
- E. Hawker, R. A. Johnson, J. L. Raaf University of Cincinnati
- ► T. Hart, E. D. Zimmerman, University of Colorado
- L. Bugel, J. M. Conrad, J. Formaggio, J. M. Link, J. Monroe, M. H. Shaevitz, M. Sorel, G. P. Zeller, **Columbia University**
- D. Smith, Embry Riddle Aeronautical University
- C. Bhat, S. J. Brice, B. C. Brown, B. T. Fleming, R. Ford, F. G. Garcia, P. Kasper, T. Kobilarcik. I. Kourbanis, A. Malensek, W. Marsh, P. Martin, F. Mills, C. Moore, P. Nienaber, E. Prebys, A. D. Russell, P. Spentzouris, R. Stefanski, T. Williams, Fermi National Accelerator Laboratory
- D. C. Cox, A. Green, H.-O. Meyer, R. Tayloe, Indiana University
- ▶ G. T. Garvey, W. C. Louis, G. McGregor, S. McKenney, G. B. Mills, E. Quealy, V. Sandberg, B. Sapp, R. Schirato, R. Van de Water, D. H. White, Los Alamos National Laboratory
- R. Imlay, W. Metcalf, M. Sung, M. O. Wascko, Louisiana State University
- ▶ J. Cao, Y. Liu, B. P. Roe, University of Michigan
- A. O. Bazarko, M. Leung, P. D. Meyers, R. Patterson, F. C. Shoemaker,

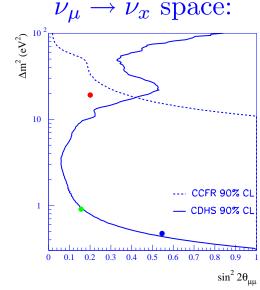
H. A. Tanaka

Princeton University

Typical muon candidate event

MiniBooNE physics potential

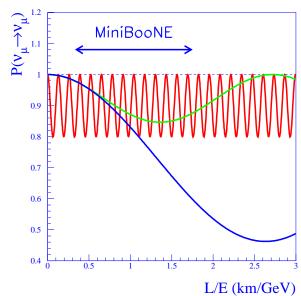

- MiniBooNE result on $\nu_{\mu} \rightarrow \nu_{e}$ search expected by 2005
- Between now and 2005...
 - results on ν_{μ} disappearance
 - searches for exotic particles
 - supernova watch
 - cross-section measurements
- Neutrino models explaining LSND can give a measurable ν_{μ} deficit in Mini-BooNE:


Model	Is a MiniBooNE Disappearance Sensitive?
$\overline{(3+1)}$	yes
(3+2)	yes
(2+2)	no?
CPTV	yes (in $\bar{\nu}_{\mu}$ running)

ν_{μ} disappearance in (3+1): how large can it be?

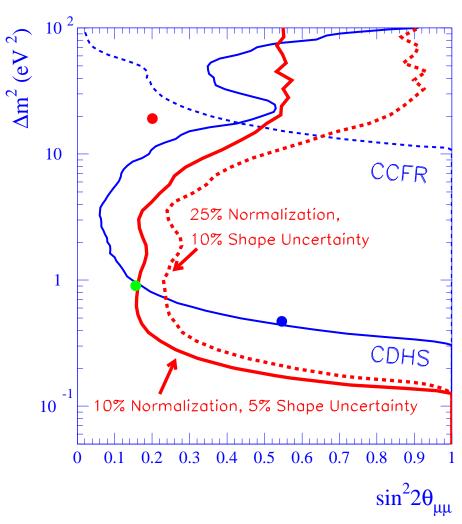
Pick as example three viable models, from joint NSBL+LSND analysis:

$$\begin{split} m_4^2 &= 19 \; eV^2, \; U_{e4} = 0.12, \; U_{\mu 4} = 0.23 \\ m_4^2 &= 0.91 \; eV^2, \; U_{e4} = 0.14, \; U_{\mu 4} = 0.20 \\ m_4^2 &= 0.47 \; eV^2, \; U_{e4} = 0.12, \; U_{\mu 4} = 0.40 \end{split}$$



MiniBooNE can see a large ν_{μ} deficit

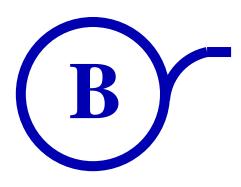
Energy shape information can significantly improve the MiniBooNE sensitivity for:


few $0.1 \le \Delta m^2 \le \text{few } eV^2$

u_{μ} disappearance sensitivity in MiniBooNE

Expected MiniBooNE 90% CL sensitivity by the end of the year should lie somewhere between the solid and the dashed red line...

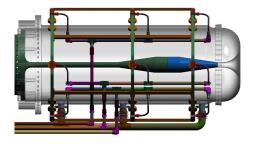
Dots are predictions for some viable (3+1) models



• MiniBooNE reach at low Δm^2 should extend significantly beyond present limits. This is a very interesting neutrino mass region!

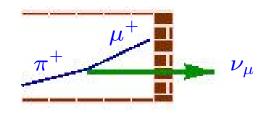
u_{μ} disappearance: limiting experimental factors

- The MiniBooNE ν_{μ} measurement will be systematics-dominated
- Systematics affecting the rate and energy distribution:
 - Number of beam protons
 - ν_{μ} flux
 - ν_{μ} cross-sections
 - Event reconstruction
 - Energy resolution/calibration
 - Event selection
- A two-detector experiment (BooNE?) can
 - push the sensitivity curve "to the left": by taking far-to-near ν_{μ} event rate ratios, some systematic uncertainties cancel
 - push the sensitivity curve "down": by placing the 2nd detector downstream of the 1st, low Δm^2 reach can be further extended
- Main uncertainties: ν_{μ} flux and cross-section


The BooNE Beam

Primary Beam:

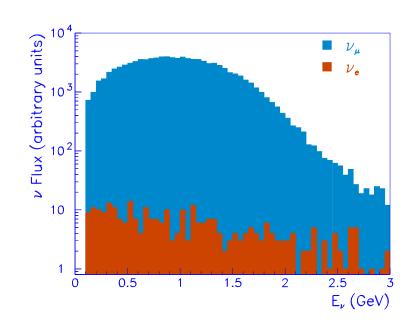
high-intensity 8 GeV proton source from FNAL Booster.


MiniBooNE requires 10^{21} protons on target $\Leftrightarrow 2$ years of running

Secondary Beam:

protons strike a 71 cm beryllium target, producing secondary π^{\pm} 's, K^{\pm} 's.

Magnetic focusing of secondary beam from horn surrounding the target

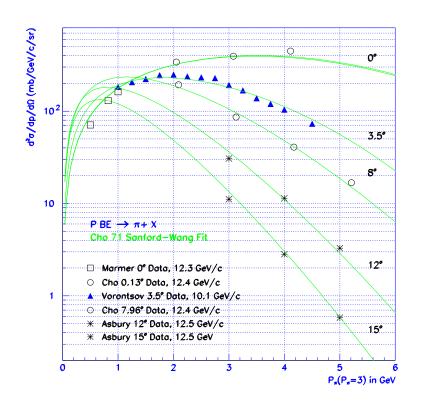

Neutrino Beam:

 $\pi^+ \to \mu^+ \nu_{\mu}$ in the 25/50 m decay channel.

After absorber, almost pure ν_{μ} beam pointing towards the detector

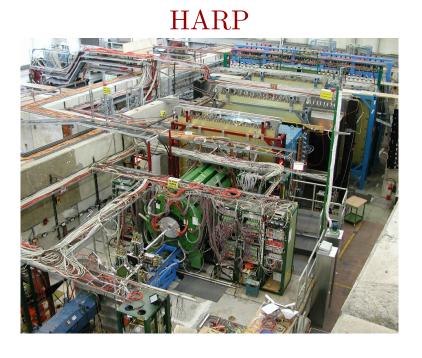
Neutrino flux in MiniBooNE

- ν_{μ} flux peaks at $\simeq 1 \text{ GeV}$
- Flux uncertainty is due to the π^+ production uncertainty in p-Be interactions

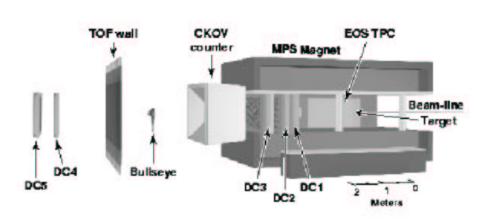

- To gain a better understanding of the flux:
 - combined analysis of existing π production data in p-Be \Rightarrow "K2K-style" global parametrization of $d^2\sigma/dp$ $d\cos\theta$ for $p+Be\to\pi^++X$
 - collaboration with BNL E910 experiment to analyze more recent data on thin Be targets
 - collaboration with HARP experiment at CERN
 ⇒ data taken last summer with replica of thick Be target used in MiniBooNE; data analysis is ongoing
 - GEANT4-based simulation of the flux interfaced to all this wealth of physics information

Flux 1: combined analysis of existing $p + Be \rightarrow \pi^+ + X$ data

- MiniBooNE needs: $p_b = 8.9 \text{ GeV/c}$, $p_{\pi} = 0.5$ 4 GeV/c, $\theta_{\pi} = 0$ 15 deg
- "Sanford-Wang" parametrization fits data reasonably well (10-15% level):

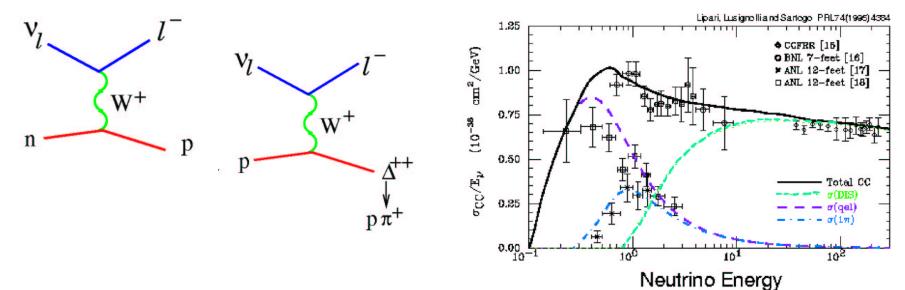

Experiment	$ heta_\pi$ (deg)	$p_{m{b}}$ (GeV/c)	p_{π} (GeV/c)	Error
Allaby 70	0 - 5	19.1	6 - 18	15 - 20%
Asbury 68	12, 15	12.5	3 - 5	15%
Cho 71	0 - 11	12.4	2 - 6	10 - $15%$
Dekkers 64	0, 5	18.8	2 - 12	10%
E910 2001	15, 31.8	$12.3,\ 17.5$	0.1 - 1.2	5 - $10%$
Marmer 71	0, 3, 5	12.3	0.5 - 2.5	15%
Papp 75	12.5	1.753 - 5.0	0.5 - 3.5	10%
Vorontsov 88	3.5	10.1	1 - 4.5	25%

(analysis by Jocelyn Monroe, Columbia U.)



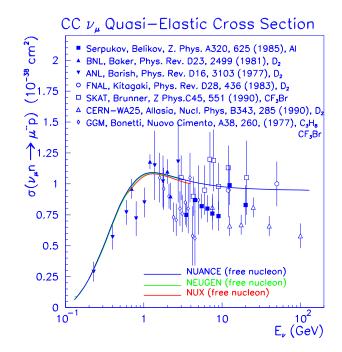
Flux 2: HARP and BNL E910

• Current generation experiments, with better statistics and particle ID, 4π coverage, wider choice of beam momenta and targets


BNL E910

- Goal: reduce uncertainty in π -production data to the few % level
- HARP should allow us to understand π^+ reinteractions in Be as well (thin/thick target comparisons)

Neutrino cross-sections in the ~ 1 GeV range


- For a good review: Sam Zeller, "Low Energy Neutrino Interactions", U1.004
- Dominant processes at $1 \simeq \text{GeV}$ are neutrino-nucleon Quasi-Elastic scattering and resonant π production:

- Not very well understood:
 - Not much data
 - Nuclear effects play an important role
 - Transition region: inelastic channels start to contribute

Quasi-Elastic cross-section and u_{μ} disappearance

The best known process is the QE interaction \Rightarrow select a "QE-like" data sample only for MiniBooNE ν_{μ} disappearance?

- Collaborative effort to improve the cross-section knowledge is ongoing. Two examples:
 - use e^- -nucleus scattering data to understand nuclear effects
 - reanalyze 20 yr-old data with updated free nucleon form factors (see H. Budd, A. Bodek, P13.011)

Summary

- Phenomenologists like sterile neutrinos to explain LSND... and theorists like them too!
- Combining LSND with other oscillation results provides hints where to look
- How to find sterile neutrinos? Disappearance measurements
- Disappearance can be large!
- MiniBooNE ν_{μ} disappearance result will extend beyond our current sensitivity reach
- 50k ν_{μ} event candidates are on tape already, and MiniBooNE should have a competitive ν_{μ} disappearance measurement by 2003
- Conclusive test of the LSND evidence for oscillations in 2005, with the Mini-BooNE $\nu_{\mu} \rightarrow \nu_{e}$ result